Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lunar paleomagnetic studies have identified multidomain metallic Fe–Ni alloys as the dominant magnetic contributors in mare basalts. Here, we explore the low‐temperature magnetic behavior of standard samples for a suite of opaque minerals that occur within mare basalts (single‐domain and multidomain Fe, wüstite, ulvöspinel, iron chromite, ilmenite, and troilite). We compare the observed low‐temperature behaviors to those of several Apollo mare basalt samples (10003, 10044, 10020, 10069, 10071, 12009, 12022, 15597). Notable magnetic transitions were detected at 30 K (ilmenite), 60–80 K (chromite, troilite), and 100–125 K (ulvöspinel, chromite). We also investigated the effects of low‐temperature cycling on mare basalt remanence and observed that only grains with coercivities 20–40 mT were cleaned. This suggests a minimal impact of diurnal temperature cycling at the lunar surface on the retrieved lunar paleointensity values. Using comprehensive electron microscopy techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), x‐ray diffraction, and transmission electron microscopy (TEM), we further examined magnetic phases within four Apollo 11 mare basalt samples. Our findings revealed the presence of Fe grains (one to 10 μm in diameter) associated with troilite contain sub‐grains ranging in size from tens to hundreds of nanometers in some samples. These grains, which fall within the single‐domain to multi‐domain range as observed in their first‐order reversal curves, might have the potential to retain high coercivity components and thereby effectively record an ancient dynamo field.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Atmospheric particulate matter (PM) as light‐absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River basin by comparing among laboratory‐measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of 1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon‐based synthetic, black road‐tire‐wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source‐area contributions implying strong interannual changes in regional source behavior, dust‐storm frequency, and (or) transport tracks. Observations of dust‐storm activity in the western U.S. and particle‐size averages for all samples (median, 25 μm) indicated that regional dust from deserts dominated mineral‐dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.more » « less
-
Abstract Light‐absorbing particles in atmospheric dust deposited on snow cover (dust‐on‐snow, DOS) diminish albedo and accelerate the timing and rate of snow melt. Identification of these particles and their effects is relevant to snow‐radiation modeling and water‐resource management. Laboratory‐measured reflectance of DOS samples from the San Juan Mountains (USA) were compared with DOS mass loading, particle sizes, iron mineralogy, carbonaceous matter type and content, and chemical compositions. Samples were collected each spring for water years 2011–2016, when individual dust layers had merged into one (all layers merged) at the snow surface. Average reflectance values of the six samples were 0.2153 (sd, 0.0331) across the visible wavelength region (0.4–0.7 μm) and 0.3570 (sd, 0.0498) over the full‐measurement range (0.4–2.50 μm). Reflectance values correlated inversely to concentrations of ferric oxide, organic carbon (1.4–10 wt.%), magnetite (0.05–0.13 wt.%), and silt (PM63‐3.9;median grain sizes averaged 21.4 μm) but lacked correspondence to total iron and PM10contents. Measurements of reflectance and Mössbauer spectra and magnetic properties indicated that microcrystalline hematite and nano‐size goethite were primarily responsible for diminished visible reflectance. Positive correlations between organic carbon and metals attributed to fossil‐fuel combustion, with observations from electron microscopy, indicated that some carbonaceous matter occurred as black carbon. Magnetite was a surrogate for related light‐absorbing minerals, dark rock particles, and contaminants. Similar analyses of DOS from other areas would help evaluate the influences of varied dust sources, wind‐storm patterns, and anthropogenic inputs on snow melt and water resources in and beyond the Colorado River Basin.more » « less
An official website of the United States government
